The Rhythm of Perception
Course Reading List
G. Hickok, 2015 (W)
UC Irvine
Review/theory
von Stein, A., & Sarnthein, J. (2000). Different
frequencies for different scales of cortical integration: from local gamma to
long range alpha/theta synchronization. Int J Psychophysiol, 38(3), 301-313.
VanRullen, R., & Koch, C. (2003). Is perception discrete
or continuous? Trends Cogn Sci, 7(5), 207-213.
Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations
in cortical networks. Science, 304(5679), 1926-1929.
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., &
Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of
attentional selection. Science, 320(5872), 110-113.
Vanrullen, R., & Dubois, J. (2011). The psychophysics of
brain rhythms. Front Psychol, 2, 203.
Giraud, A. L., Kleinschmidt, A., Poeppel, D., Lund, T. E.,
Frackowiak, R. S., & Laufs, H. (2007). Endogenous cortical rhythms determine
cerebral specialization for speech perception and production. Neuron, 56(6),
1127-1134.
Hanslmayr, S., Gross, J., Klimesch, W., & Shapiro, K. L.
(2011). The role of alpha oscillations in temporal attention. Brain Res Rev,
67(1-2), 331-343.
Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An
oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn
Sci, 16(4), 200-206.
Henry, M. J., & Herrmann, B. (2012). A precluding role
of low-frequency oscillations for auditory perception in a continuous
processing mode. J Neurosci, 32(49), 17525-17527.
Ng, B. S., Schroeder, T., & Kayser, C. (2012). A
precluding but not ensuring role of entrained low-frequency oscillations for
auditory perception. J Neurosci, 32(35), 12268-12276.
Giraud, A. L., & Poeppel, D. (2012). Cortical
oscillations and speech processing: emerging computational principles and
operations. Nat Neurosci, 15(4), 511-517.
Obleser, J., Herrmann, B., & Henry, M. J. (2012). Neural
Oscillations in Speech: Don't be Enslaved by the Envelope. Front Hum Neurosci,
6, 250.
Peelle, J. E., & Davis, M. H. (2012). Neural
Oscillations Carry Speech Rhythm through to Comprehension. Front Psychol, 3,
320.
Lakatos, P., Musacchia, G., O'Connel, M. N., Falchier, A.
Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter
mechanism of auditory selective attention. Neuron, 77(4), 750-761
VanRullen, R. (2013). Visual attention: a rhythmic process?
Curr Biol, 23(24), R1110-1112.
Keitel, C., Quigley, C., & Ruhnau, P. (2014).
Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic
rhythms or frequency-following response? J Neurosci, 34(31), 10137-10140.
Watrous, A. J., Fell, J., Ekstrom, A. D., & Axmacher, N.
(2014). More than spikes: common oscillatory mechanisms for content specific
neural representations during perception and memory. Curr Opin Neurobiol, 31C,
33-39.
Modulation rate
filters
Viemeister, N. F. (1979). Temporal modulation transfer
functions based upon modulation thresholds. J Acoust Soc Am, 66(5), 1364-1380.
Dau, T., Kollmeier, B., & Kohlrausch, A. (1997).
Modeling auditory processing of amplitude modulation. I. Detection and masking
with narrow-band carriers. J Acoust Soc Am, 102(5 Pt 1), 2892-2905.
Dau, T., Kollmeier, B., & Kohlrausch, A. (1997).
Modeling auditory processing of amplitude modulation. II. Spectral and temporal
integration. J Acoust Soc Am, 102, 2906.
Modulation rate coding
Langner, G., & Schreiner, C. E. (1988). Periodicity
coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J
Neurophysiol, 60(6), 1799-1822.
Langner, G., Sams, M., Heil, P., & Schulze, H. (1997).
Frequency and periodicity are represented in orthogonal maps in the human
auditory cortex: evidence from magnetoencephalography. Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology,
181(6), 665-676.
Giraud, A. L., Lorenzi, C., Ashburner, J., Wable, J., Johnsrude,
I., Frackowiak, R., & Kleinschmidt, A. (2000). Representation of the
temporal envelope of sounds in the human brain. J Neurophysiol, 84(3),
1588-1598.
Barton, B., Venezia, J. H., Saberi, K., Hickok, G., &
Brewer, A. A. (2012). Orthogonal acoustic dimensions define auditory field maps
in human cortex. Proceedings of the National Academy of Sciences, 109(50),
20738-20743.
Herdener, M., Esposito, F., Scheffler, K., Schneider, P.,
Logothetis, N. K., Uludag, K., & Kayser, C. (2013). Spatial representations
of temporal and spectral sound cues in human auditory cortex. Cortex, 49(10),
2822-2833.
Borst, M., Langner, G., & Palm, G. (2004). A
biologically motivated neural network for phase extraction from complex sounds.
Biol Cybern, 90(2), 98-104.
Friedel, P., Burck, M., & Leo van Hemmen, J. (2007).
Neuronal identification of acoustic signal periodicity. Biol Cybern, 97(3),
247-260.
Mechanism of
oscillations
Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K.,
& Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal
activity increases during development and is correlated to the number of
synapses in cultured cortical neuron networks. Neurosci Lett, 163(2), 163-165.
Xing, D., Yeh, C. I., Burns, S., & Shapley, R. M.
(2012). Laminar analysis of visually evoked activity in the primary visual
cortex. Proc Natl Acad Sci U S A, 109(34), 13871-13876.
Purely Behavioral
Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J.
(2002). Temporal aspects of stimulus-driven attending in dynamic arrays.
Psychol Sci, 13(4), 313-319.
Ghitza, O., & Greenberg, S. (2009). On the possible role
of brain rhythms in speech perception: intelligibility of time-compressed
speech with periodic and aperiodic insertions of silence. Phonetica, 66(1-2),
113-126.
Landau, A. N., & Fries, P. (2012). Attention samples
stimuli rhythmically. Curr Biol, 22(11), 1000-1004.
Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H.
(2014). Behavioral oscillations in attention: rhythmic alpha pulses mediated
through theta band. J Neurosci, 34(14), 4837-4844.
Electro/magnetic -
Visual
Busch, N. A., Dubois, J., & VanRullen, R. (2009). The
phase of ongoing EEG oscillations predicts visual perception. J Neurosci,
29(24), 7869-7876.
Dugue, L., Marque, P., & VanRullen, R. (2011). The phase
of ongoing oscillations mediates the causal relation between brain excitation
and visual perception. J Neurosci, 31(33), 11889-11893.
VanRullen, R., & Macdonald, J. S. (2012). Perceptual
echoes at 10 Hz in the human brain. Curr Biol, 22(11), 995-999.
Neuling, T., Rach, S., Wagner, S., Wolters, C. H., &
Herrmann, C. S. (2012). Good vibrations: oscillatory phase shapes perception.
Neuroimage, 63(2), 771-778.
de Graaf, T. A., Gross, J., Paterson, G., Rusch, T., Sack,
A. T., & Thut, G. (2013). Alpha-band rhythms in visual task performance:
phase-locking by rhythmic sensory stimulation. PLoS One, 8(3), e60035.
Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local
entrainment of alpha oscillations by visual stimuli causes cyclic modulation of
perception. J Neurosci, 34(10), 3536-3544.
Electro/magnetic –
Auditory/speech
Luo, H., & Poeppel, D. (2007). Phase patterns of
neuronal responses reliably discriminate speech in human auditory cortex.
Neuron, 54(6), 1001-1010.
Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W.,
& Rodriguez, E. (2007). Synchronization of neural activity across cortical
areas correlates with conscious perception. J Neurosci, 27(11), 2858-2865.
Luo, H., Liu, Z., & Poeppel, D. (2010). Auditory cortex
tracks both auditory and visual stimulus dynamics using low-frequency neuronal
phase modulation. PLoS Biol, 8(8), e1000445. doi: 10.1371/journal.pbio.1000445
Henry, M. J., & Obleser, J. (2012). Frequency modulation
entrains slow neural oscillations and optimizes human listening behavior. Proc
Natl Acad Sci U S A, 109(49), 20095-20100.
Ilhan, B., & VanRullen, R. (2012). No counterpart of
visual perceptual echoes in the auditory system. PLoS One, 7(11), e49287.
Pena, M., & Melloni, L. (2012). Brain oscillations
during spoken sentence processing. J Cogn Neurosci, 24(5), 1149-1164.
Peelle, J. E., Gross, J., & Davis, M. H. (2013).
Phase-locked responses to speech in human auditory cortex are enhanced during
comprehension. Cereb Cortex, 23(6), 1378-1387.
Arnal, L. H., Doelling, K. B., & Poeppel, D. (2014).
Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy. Cereb
Cortex. doi: 10.1093/cercor/bhu103
Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D.
(2014). Acoustic landmarks drive delta-theta oscillations to enable speech
comprehension by facilitating perceptual parsing. Neuroimage, 85 Pt 2, 761-768.
Kosem, A., Gramfort, A., & van Wassenhove, V. (2014).
Encoding of event timing in the phase of neural oscillations. Neuroimage, 92,
274-284.
ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt,
N., & Zion-Golumbic, E. (2014). Rhythmicity and cross-modal temporal cues
facilitate detection. Neuropsychologia, 63, 43-50.
Henry, M. J., Herrmann, B., & Obleser, J. (2014).
Entrained neural oscillations in multiple frequency bands comodulate behavior.
Proc Natl Acad Sci U S A, 111(41), 14935-14940.
Strauss, A., Kotz, S. A., Scharinger, M., & Obleser, J.
(2014). Alpha and theta brain oscillations index dissociable processes in
spoken word recognition. Neuroimage, 97, 387-395.
Morillon, B., Schroeder, C. E., & Wyart, V. (2014).
Motor contributions to the temporal precision of auditory attention. Nat
Commun, 5, 5255.
Electro/magnetic -
Somatosensory
Monto, S., Palva, S., Voipio, J., & Palva, J. M. (2008).
Very slow EEG fluctuations predict the dynamics of stimulus detection and
oscillation amplitudes in humans. J Neurosci, 28(33), 8268-8272.
Haegens, S., Nacher, V., Hernandez, A., Luna, R., Jensen,
O., & Romo, R. (2011). Beta oscillations in the monkey sensorimotor network
reflect somatosensory decision making. Proc Natl Acad Sci U S A, 108(26),
10708-10713.
Haegens, S., Nacher, V., Luna, R., Romo, R., & Jensen,
O. (2011). alpha-Oscillations in the monkey sensorimotor network influence
discrimination performance by rhythmical inhibition of neuronal spiking. Proc
Natl Acad Sci U S A, 108(48), 19377-19382.
Haegens, S., Vazquez, Y., Zainos, A., Alvarez, M., Jensen,
O., & Romo, R. (2014). Thalamocortical rhythms during a vibrotactile
detection task. Proc Natl Acad Sci U S A, 111(17), E1797-1805.
Applications
Horschig, J. M., Zumer, J. M., & Bahramisharif, A.
(2014). Hypothesis-driven methods to augment human cognition by optimizing
cortical oscillations. Front Syst Neurosci, 8, 119.
No comments:
Post a Comment