Friday, January 2, 2015

Neural Oscillations and Perception: Reading list

I'm teaching a grad course on neural oscillations and perception.  Here's some readings I've collected. What are the other key readings I should include?

The Rhythm of Perception
Course Reading List
G. Hickok, 2015 (W)
UC Irvine


von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol, 38(3), 301-313.

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926-1929.

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320(5872), 110-113.

Vanrullen, R., & Dubois, J. (2011). The psychophysics of brain rhythms. Front Psychol, 2, 203.

Giraud, A. L., Kleinschmidt, A., Poeppel, D., Lund, T. E., Frackowiak, R. S., & Laufs, H. (2007). Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56(6), 1127-1134.

Jensen, O., Bonnefond, M., & VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci, 16(4), 200-206.

Henry, M. J., & Herrmann, B. (2012). A precluding role of low-frequency oscillations for auditory perception in a continuous processing mode. J Neurosci, 32(49), 17525-17527.

Ng, B. S., Schroeder, T., & Kayser, C. (2012). A precluding but not ensuring role of entrained low-frequency oscillations for auditory perception. J Neurosci, 32(35), 12268-12276.

Giraud, A. L., & Poeppel, D. (2012). Cortical oscillations and speech processing: emerging computational principles and operations. Nat Neurosci, 15(4), 511-517.

Obleser, J., Herrmann, B., & Henry, M. J. (2012). Neural Oscillations in Speech: Don't be Enslaved by the Envelope. Front Hum Neurosci, 6, 250.

Peelle, J. E., & Davis, M. H. (2012). Neural Oscillations Carry Speech Rhythm through to Comprehension. Front Psychol, 3, 320.

Lakatos, P., Musacchia, G., O'Connel, M. N., Falchier, A. Y., Javitt, D. C., & Schroeder, C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77(4), 750-761

VanRullen, R. (2013). Visual attention: a rhythmic process? Curr Biol, 23(24), R1110-1112.

Keitel, C., Quigley, C., & Ruhnau, P. (2014). Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci, 34(31), 10137-10140.

Modulation rate filters

Viemeister, N. F. (1979). Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am, 66(5), 1364-1380.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am, 102(5 Pt 1), 2892-2905.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 102, 2906.

Modulation rate coding

Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol, 60(6), 1799-1822.

Langner, G., Sams, M., Heil, P., & Schulze, H. (1997). Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(6), 665-676.

Giraud, A. L., Lorenzi, C., Ashburner, J., Wable, J., Johnsrude, I., Frackowiak, R., & Kleinschmidt, A. (2000). Representation of the temporal envelope of sounds in the human brain. J Neurophysiol, 84(3), 1588-1598.

Barton, B., Venezia, J. H., Saberi, K., Hickok, G., & Brewer, A. A. (2012). Orthogonal acoustic dimensions define auditory field maps in human cortex. Proceedings of the National Academy of Sciences, 109(50), 20738-20743.

Herdener, M., Esposito, F., Scheffler, K., Schneider, P., Logothetis, N. K., Uludag, K., & Kayser, C. (2013). Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex, 49(10), 2822-2833.

Borst, M., Langner, G., & Palm, G. (2004). A biologically motivated neural network for phase extraction from complex sounds. Biol Cybern, 90(2), 98-104.

Friedel, P., Burck, M., & Leo van Hemmen, J. (2007). Neuronal identification of acoustic signal periodicity. Biol Cybern, 97(3), 247-260.

Mechanism of oscillations

Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., & Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neurosci Lett, 163(2), 163-165.

Xing, D., Yeh, C. I., Burns, S., & Shapley, R. M. (2012). Laminar analysis of visually evoked activity in the primary visual cortex. Proc Natl Acad Sci U S A, 109(34), 13871-13876.

Purely Behavioral

Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci, 13(4), 313-319.

Ghitza, O., & Greenberg, S. (2009). On the possible role of brain rhythms in speech perception: intelligibility of time-compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66(1-2), 113-126.

Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Curr Biol, 22(11), 1000-1004.

Song, K., Meng, M., Chen, L., Zhou, K., & Luo, H. (2014). Behavioral oscillations in attention: rhythmic alpha pulses mediated through theta band. J Neurosci, 34(14), 4837-4844.

Electro/magnetic - Visual

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J Neurosci, 29(24), 7869-7876.

Dugue, L., Marque, P., & VanRullen, R. (2011). The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci, 31(33), 11889-11893.

VanRullen, R., & Macdonald, J. S. (2012). Perceptual echoes at 10 Hz in the human brain. Curr Biol, 22(11), 995-999.

Neuling, T., Rach, S., Wagner, S., Wolters, C. H., & Herrmann, C. S. (2012). Good vibrations: oscillatory phase shapes perception. Neuroimage, 63(2), 771-778.

de Graaf, T. A., Gross, J., Paterson, G., Rusch, T., Sack, A. T., & Thut, G. (2013). Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS One, 8(3), e60035.

Spaak, E., de Lange, F. P., & Jensen, O. (2014). Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci, 34(10), 3536-3544.

Electro/magnetic – Auditory/speech

Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proc Natl Acad Sci U S A, 109(49), 20095-20100.

Ilhan, B., & VanRullen, R. (2012). No counterpart of visual perceptual echoes in the auditory system. PLoS One, 7(11), e49287.

Arnal, L. H., Doelling, K. B., & Poeppel, D. (2014). Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy. Cereb Cortex. doi: 10.1093/cercor/bhu103

Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage, 85 Pt 2, 761-768.

Kosem, A., Gramfort, A., & van Wassenhove, V. (2014). Encoding of event timing in the phase of neural oscillations. Neuroimage, 92, 274-284.

ten Oever, S., Schroeder, C. E., Poeppel, D., van Atteveldt, N., & Zion-Golumbic, E. (2014). Rhythmicity and cross-modal temporal cues facilitate detection. Neuropsychologia, 63, 43-50.

Henry, M. J., Herrmann, B., & Obleser, J. (2014). Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc Natl Acad Sci U S A, 111(41), 14935-14940.

Electro/magnetic - Somatosensory

Monto, S., Palva, S., Voipio, J., & Palva, J. M. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci, 28(33), 8268-8272.


Horschig, J. M., Zumer, J. M., & Bahramisharif, A. (2014). Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations. Front Syst Neurosci, 8, 119.


Unknown said...

Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological review, 99(3), 480.

David Poeppel said...

I'm kind of fond of this one:
Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex
H Luo, D Poeppel (2007),
Neuron 54 (6), 1001-1010

And one of Huan Luo's MEG papers that deserves more attention - and extends the ideas to multi-sensory (now ubiquitous):
Auditory cortex tracks both auditory and visual stimulus dynamics using low-frequency neuronal phase modulation
H Luo, Z Liu, D Poeppel (2010),
PLoS Biology 8 (8), e1000445

Nice new piece:
More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory
Andrew J Watrous1, Juergen Fell1, Arne D Ekstrom3,4 and Nikolai Axmacher (2015), Current Opinion in Neurobiology

Important paper by Peelle, Gross, Davis:
Phase-locked responses to speech in human auditory cortex are enhanced during comprehension
JE Peelle, J Gross, MH Davis
Cerebral Cortex 23 (6), 1378-1387

OK, that was just my warm-up ... :-)

David Poeppel said...


Antje Strauß, Sonja A. Kotz, Mathias Scharinger, Jonas Obleser

NeuroImage, Vol 97, 15 August 2014, Pages 387–395

Alpha and theta brain oscillations index dissociable processes in spoken word recognition

And #2: Many things by Saskia Haegens, e.g.:

Haegens S, Nácher V, Hernández A, Luna R, Jensen O, & Romo R. (2011) Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. PNAS, 108(26), 10708–10713.

Haegens S, Luther L, & Jensen O. (2012) Somatosensory anticipatory alpha activity increases to suppress distracting input. Journal of Cognitive Neuroscience, 24(3), 677-685.

Haegens S, Vázquez Y, Zainos A, Alvarez M, Jensen O, & Romo R. (2014) Thalamocortical rhythms during a vibrotactile detection task. PNAS, 111(17), E1797–E1805.

And #3: Many things by Lucia Melloni. For example,

Brain oscillations during spoken sentence processing.

Marcela Peña and Lucia Melloni

Journal of cognitive neuroscience, doi: 10.1162/jocn_a_00144

gcogan said...

VanRullen, R. & Koch, C. (2003). Is perception discrete or continuous?
TICS 7(5). 207-213.

A good background paper for perception/oscillations.