Tuesday, November 23, 2010

Guest post by Pamelia Brown

Neurobiologist finds link between music education and improved speech recognition

Dr. Nina Kraus, a professor of neurobiology at Northwestern University, announced on Feb. 20 to the American Association for the Advancement of Science her recent findings linking musical ability and speech pattern recognition. During the press conference, Kraus and her associates advised that music programs in K-12 schools be further developed, despite that many schools are completely cutting music education during the economic recession.

According to a Science Daily article, Kraus’ and other neuroscientists’ research discovered that playing a musical instrument significantly enhances the brain stem’s sensitivity to speech sounds. The research is the first of its kind to concretely establish a link between musical ability and speech recognition.

"People's hearing systems are fine-tuned by the experiences they've had with sound throughout their lives," Kraus explained. "Music training is not only beneficial for processing music stimuli. We've found that years of music training may also improve how sounds are processed for language and emotion."

Kraus also suggested that playing musical instruments may be helpful for children with learning disabilities, like developmental dyslexia or autism. Her findings have aligned closely with earlier research that indicated auditory training can help children with brainstem sound encoding anomalies.

Conducted at the Northwestern University’s Auditory and Neuroscience Laboratory using state-of-the-art technology, Kraus’ research was carried out by comparing the brain responses of musically-trained and untrained people. Kraus studied how the brain responded to variable sounds (like the sounds of noisy classroom) and to predictable sounds (like a teacher’s voice). She found that those who were musically trained had a much more sensitive sensory system, meaning that they could easily take advantage of stimulus regularities and distinguish between speech and background noise.

Previously, Kraus and her colleagues found that the ability to distinguish acoustic patterns was linked to reading ability and the ability to distinguish speech patterns immersed in noise. Kraus is also known for developing the clinical technology BioMARK , which objectively assesses the neural processing of sound and helps diagnose auditory processing disorders in children.

To view Kraus’ recently published research, visit the Auditory and Neuroscience Laboratory’s publications page .

This guest post is contributed by Pamelia Brown, who writes on the topics of associates degree. She welcomes your comments at her email Id pamelia.brown@gmail.com .

No comments: